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A Robust Alternative to the Normal Distribution

D. L. MclLeish

Consider some of the arguments often advanced for the use of the

normal distribution in a given situation:

(a) It is thought that the variable of interest can be represented as
a sum of & large number of independent, sma.ll, and possibly iden-
tically distributed increments (i.e., the distribution is infinitely
divisible).

(b) The distribution is symmetric and has all moments finite (it is

_ argued that most real world measurements should have this property).

{c) The distribution is closed under convolutions; therefore useful for
estimation and modelling.

(d) The normal distribution (or .a reasonable facsimile) seems to fit
many real world phenomena.

(e) The model can be extended to allow for dependent increments.

(£) The distribution is easy to handle. In the normal case, the maximum
likelihood estimates are simple, although the distribution function
requires numerical approximation. Generation of random normal var-

iates is easy from a uniform generator.

On the other hand, many arguments have been made against the routine
assumption of normality. Perhaps the most important of these is that
"outliers” or "errors" seem to occur in otherwise normal samples and the
normal estimates are highly non-robust to these. This observation has
given rise to a considerable volume of literature in the robust theory
of estimation. Many of the arguments and controversies surrounding,
for example, the choice of the psi function for Huber's M-estimates u'cK

difficult for many to appreciate since they are presented either with
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only heuristic Justification or in reference to a seemingly artificial

contemination model. The notion that there are "gross errors” in an

experimenter's data is often one that is difficult to account for: fur-
thermore, it is unnecessary to the Justification of robust procedures as
we shall see. Finally, although there is widespread agreement‘ about the
desirability of using robust methods, which such methods are most effec-
tive remains a controversial question (cf. Stigler (1977)). Some of the
remaining reluctance to use robust methods may be related to Fisher's

comment (quoted from Wilkinson (1979)):

""his example (relating to the Cauchy distribution) serves also to illus-
trate the practical difficulty which observers often find, that a few
extreme observations appear to dominate the value of the mean. In these
cases the rejection of extreme values is often advocated, and it may
often happen that gross errors are thus rejected. As a statistical mea-
sure, however, the rejection of observations is too crude to be defended:
and unless there are other reasons for rejection than mere divergence
from the majority, it would be more philosophical to accept these extreme
values, not as gross errors, but as ipndications that the distribution of
errors is not normal. As we shall show, the only Pearsonian curve for
which the mean is the best statistic for locating the curve, is the nor-
mal or Gaussian curve of errors. If the curve is not of this form the
mean 18 not necessarily of any value vhatever. The determination of

the true curves for different types of work is therefore of great prac-

tical importance..."

-The purpose of this paper is to discuss a family of distributions

that seems more natural than the contamination models (for example, they

-
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possess the properties (a) through (e) above), which approximate the
normal distribution arbitrarily closely, and yet for which the maximum
likelihood estimators are robust. Property (f) is not enj)oyed by this
family of distributions, since the simplest form for the density func-
tion in general is through a convergent power series. However, with
the rapid decrease in the cost of high-speed computation, this defect
is thought to be relatively unimportant. This distribution arises quite
naturally in two different ways, and in a related paper is shown to pro~
vide a good fit to stock returns. Random generation of variates having
this distribution requires only a normal and & gamma generator. The
density function resembles that of the fxorma.l, having es support the
whole real line, but the greater kurtosis makes this useful for model-
ling normal-like data in which there are apprarent "outliers".

The density function resembles that of the normal; it is symmetric,
unimodal, and has support the whole real line. The kurtosis is greater
than or equal to the normal, making this distribution useful in modelling
phenomena with scomewhat heavier tails than the normal. It has been used,
for example, by Sichel (1973) to model the size distribution of diamonds.

This family connects two extreme members, the normal (for which the
maximm likelihood estimates are not robust) and the Laplace (for which
the maximum likelihood estimate of location is the median and is highly
robust though not very efficient for normal-like distributions). There
are other ways of connecting these two extremes. For example, the ex-
ponential power family (cf. Wilkinson (1979)) leads to I.p estimates
of location, 1 <p < 2. For p > 1, these are not robust. Another

family is proposed by 0. Barndorff-Nielson (1977) to model the
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distribution of sizes of sand particles. This distribution resembles
ours in many ways, although it is not closed under convolutioms. It
could, like the present family, be used to derive robust estimates of
location.

Some of the properties of the present family are also obtained by
Teichroew (1957).

For convenience, distributions and their parameters will be as de-

fined in Johnson and Kotz (1970).

The Density and Its Properties.
Let G be a gamma distributed variate with parameters (a,2) and

let Z be a standard normal variate independent of G. Then the den-

sity function of G}‘Z is:

2
(1) g,(2) = rya-sla o (z°/2y)~y/2 a .

—_—1
2% AT(a) Jo

This density is finite for all z ¥ 0 if a > 0 and finite for all z

it a>% For a>%,

(2) 80.(0) - M
2/1T (a)

.

“he modified Bessel functio:{ of the second kind is an even function that

may te defined Dy:

-v
2
K,(s) = %(J:—I\ rt"‘l o-tr /Mt 4
J o

If we now put % = y/2 4in the definition of the density g , we obtain:
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(3) L (1=
3 Su(Z) = o —2—) Ka—k(z) .
This density was defined by Pearson, Jeffrey, and Elderton (1929) and
investigated further by Pearson, Stouffer and David (1932). Here an
asymptotic formula for large o is also given. The distribution is
applied to testing for differences between chi-squared values in con-
tingency tabled data, and tables of the distribution function for small
vaelues of & are provided. This density may be used to describe the
sample covariance between independent, identically distributed normal
samples. .

It is not difficult to show that this family of densities satisfies,

for positive a , a homogeneous differential equation of the form

gu(z) - H&=1) g1 ~ g (a) =0 .

z
This obtains from the modified Bessel equation sautisfied by Kv(z) .

z2 Kc + 2 KG - (22 + v2) Kv =0 .

ga(z) also satisfies the difference equation:

2
Ziaz- 1) 5up1(’> - 2“35*1(5) + (2a - 1) ga(’) =0

wvhich follows from the equation:
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z K“_l(z) -3 Kv+1(') = -2va(z) .

A more general family:

8y,alx) = (1 - a?)® & g,(x)
may also be defined. This is closely related to the Bessel function
distribution (cf. McKay (1932) and Laha (i954)). In this model, how-
ever, it is fairly difficult to disentangle the parameters a,a from
the iocation-scale parameters. We will therefore concentrate on (3)
‘ although many of its properties carry over to its generalization (cf.
| Press (196T)).
We will adopt (3) as the definition of the density since this will
allow the function to be defined even for negative values of a (al-~
though in this case it is not a density function).

VWe now introduce location and scale parameters to obtain the more

general family of densities:
(4) £(x;1,6,0) = § g, (X5 .

We express this general family as Be(u,6,a). This is the density func-

tion of a constant U plus the product of a standard normal variate with
one having the distribution of the square root of a gamma (a,292) var-

iate. The moment generating function of the density is:

n(t;p,0,0) = e¥t(1 - 6%2) |

(5)




Since (5) factors into eut(l-et)'a(l+6t)"a , 1t is easily seen that

this is also the density of u + G1 - G2 where G1 and G? are in-
dependent gamma (a,8) variates. Moreover, since

n(t;u,,0,0,) m(t;u,,0,0,) = m(t;u3.9 ,u3) vhere Uj =) + U, and

o

=qa, + “2 , this distribution is closed under convolutions (for fixed

3 1
scale parameters) and is therefore infinitely divisible. It therefore
has a representation such as that in property (a) above. The central

moments of the distribution are:

Elx_ulzp-l = (26)2P-l r(p_) r(a""p';ﬁ)
7T (a)

and in particular, when 2p - 1 =1, 2, 4 respectively, we obtain

%&g_ﬁl . 20% , ana 126%a(a+1) .
T (a)

Two important cases of this family of densities deserve mention.

The first is the case o =1 , when
(6) g () = %712l

This is the Laplace distribution, for which the maximum likelihood es- j
timates of location and scale are sample median and average absolute i

2 a positive constant,

deviation. The second case occurs vhen, for ©
0 approaches O and o approaches infinity. Specifically, as 6 > 0 ,

f(x;u,6,02/262) approaches the normal (u,ca) density.




When o 1is an integer, say a = n <+ 1, n > 0 , we have the

following representation of g.

(1) ().f""k -lslfenk) __1__
T S R J T (n)22n-k+1‘

This is clearly a convolution between Poisson probabilities and

those as a negative binomial t:'pe, i.e.,

(8) pJ-(n:J);;T]:F:]-.’ J=0,1,2, 3, ... .

Indeed, if X has a Poisson distribution with parsmeter |[z| and Y

has probabilities specified by (8), then
gu(z) = P(X+Y=n) .

The first few densities of this type are easily written out:

g (2) = *se"z' 53(z) = (22 + 3|z] + 3)e'|z|/16
i -Is :
g(x) = %1+ [zDell g (a) a2 U5 4 5la] 4 20 4 'Z'

See Figure 1 for graphs of the densities. The distribution function may

be defined by symmetry and the relation:

n
(9) P(x|<x) =2 ] p  Ex)
n-k ki
k=0
where Y(a,x) is the incomplete gamma function = I: 81 o=t a¢.




For the purpoge of estimating location or scale, it is often con-

venient to generate the score function directly. Setting

-s&(x)

Ny (x) = ?a-(;r >

and using the difference equation satisfied by 8y »

) - X
Nan1 %) = TR TRY + (2D

and for integral o , we have a continued fraction expansion,

1-1

-1
= | 201 3.1
na+l(x) ” +...+[x+ [x+sgnx] J .

Then, given 8y for small o , we may generate subsequent densities
through the expression

m

nlox) .

_ /X n T(a
(10) gaﬂn(x) = ('2") Sa(x) T{a+m) otk

n
k=1

Here, I'(k) is the complete gamma function, ¥Y(k,»). This approach

is often preferable to the use of the series expansion valid when

o |2\
il = ) 1 ( 2 )

(x) = = - .
s 2T (a) sin(vm) =0 k! F(~-v+k+1) " P(v+k+1l)

v=g~% is not an integer:

An alternative expansion to (7), useful for large |z| , and a

integral is the following:

- o o
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a-1
g (z) = ‘ ! "lz] 14 B2 (B-1)(u-9)
a ra) & 8|z) 21(8z)2

LD w-9)u-25) }
31(8]z])3

vhere M = h{a - 35)2.
An expression for the Sa_a ga(z) useful for maximum likelihood

estimation, is obtained by differentisting (10):

gy(2) = -¥la) g,(z) - meot(vn) g (z)

aaa

(11)

2.2k
. v o (5) U(-v + k + 1)
2T{a) sin(vm) koo K! r(-v

2
%) 2
7——T<ijk+lw(v+k+l)'p“n'zﬁ'

wvhere VY(a) 1is the digamma function Eda n I'(a).

Estimation of Parameters.

Before we present the maximum likelihood estimators of the para-
meters, we require an elementary property of the score function that is
based on the similar property for the Bessel function (cf. Abramowitz

and Stegun (1964)): zl\"(z) + \)Ig)(z) = 'ZK\)—l(z) for all v . Therefore,

s&(z) Kv_l(z) (z)
(12) PO Rl ¥ O R 7:—17—;7;5‘

for a>1 and z # 0.




We now consider the problem of estimating the parameters. We

start with the estimation of a. To begin with, as 2z + = ,

1 a-1 -z
Sa(z) ~ T a? e s
F(a)2
and
3g,(z)
oY) | . Izl
W ~ =P(a) + &n > -

Therefore, maximum likelihood estimation of o for large 2z is nearly
achieved by setting the sample mean of the variasbles £n z?, i=1, 2,
...y n equal to their expected value and solving for a. Moreover,
since the shape parsmeter o is primarily evident for o > 3/2 by the
weight in the tails, and since true maximum likelihood estimation of a
is fairly cumbersome computationally, this is one approach we used. When
true maximum likelihood estimation was attempted on samples, the
iterates often seemed to fail to converge. Furthermore, we are pri-
marily interested here in efficient estimation of 1 , and as we shall
see, this depends very little on getting an accurate estimate of a.
One possibility for the estimator of parameters is the simple mo-
ment method. For example, one approach tried was to estimate o from

the relation:
2 2
E log(xl-u) = -y + log 6° + Yla)

vhere Yy 1is Euler's constant .57721l... and ¢ 1is the digamma function.

11
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This equation was solved recursively for a after initial estimation
of 4 and 6.

Another approach that is feasible though reasonably expensive 1is
full maximum likelihood estimation of all three parameters. While this
may be an asymptotically desirable procedure, or useful if we are in-
terested in accurate estimates of a , it is not necessarily the best
method when attention is focused on estimating Y for small sample
size. In fact, some evidence was obtained that full MLE had lower
efficiency for the estimator of M (n = 20, underlying distribution =
normal) than the simple minded scheme used in the simulation.

The rather difficult question of which scheme for estimating a
leads to highest efficiency for estimation location will not be dealt
with definitively here. However, after estimating a , we may estimate
p and 6 as follows:

The maximum likelihood equation for u is:

N gylz) X; -u

= 0 with zi = )

i=1 8q'\%i

or, if a>1 and no zy = o,

vhere w; = sa—l(zi)/ga(zi)' Similarly, the maximum likelihood equation

for 0 1is:’

N
121 zis&(zi)/su(zi) +N=0

12




or, if a>1,

N
(15) K= (a0)o = g5 1wy (xp)®

Now (14) and (15) are iterated for fixed @ until convergence occurs.

When @ is known, the Fisher information matrix is given by:

Iiw zzgs_l(z)/gu(z) dz 0
1

© 482(a-1)°
0 b(o-1)% + fj, 2'62 (2)/g (x) az

Some features of these equations are interesting in the light of the
theory of robust estimation. For the purpose of this discussion, let us
assume o > 1.5. Note by (2) thet when o > .5, ga(o) = T'(a-3)/2/mT(a).

Therefore, corresponding to z = 0 , we assign weight w, = (a-1)/(a-3/2).
1 za-l %

x and so corresponding
T'(a)2

Similarly, as z + ©, ga(z) ~

to large Zg s

W o~ 2(a-1)/zi .

This produces the effect that the influence curve is approximately linear
in the central region, but bounded for all z. This is true for any fi-~
nite o although the influence curve for the normal is unbounded and

densities in this family can approximate arbitrarily closely the normal

density by taking «a sufficiently large.

13




Thus maximum likelihood estimation within this family seems to be
highly robust, but of course, robustness may be achieved at considerable
loss of efficiency. Robustness agalnst obtaining a false value of a 1is
particularly important here, since although the mean u and the variance
2620 are relatively easy to estimate, the estimate of a itself is
subject to considerable error. We considered only the loss in efficiency
in the estimation of the location parameter | when a is misspecified.
To take an extreme case, let us suppose that the observations arise from

a normal distribution (a=v) with mean ¢ and known variance 023 10.

Let us suppose, however, we believe a = 5 (so the value of 92 is .10‘2).
Then the asymptotic relative efficiency of the ML estimator of Y ob-

tained from the solution of (1h) is

o°[E ¢*(2)]°
)
E ¢°(2)

' (x)

where ¢(x) =m and Z is N(O,oz).
o

Figure 2 shows the asymptotic
efficiency of the estimator for a normal sample when various other values
of a are assumed. Note that there is high efficiency for any value of
a above about 2 and the worst value (@ = 1 for the sample median) is
.637. The efficiency seems to be much flatter as a function of sample
size than for meany other robust procedures. Holland and Welsch (197T)
show that when the scale parameter is estimated, the small sample effi-
ciency for many of the robust procedures seems to be substantially delow
its asymptotic value. For comparison, we used & = 3.46 (asymptotic
efficiency = 95%) and Monte Carlo methods on normal samples of size 10

to obtain an estimate of the efficiency for n = 10 of .94,

1h

1




On the other hand, if the observations come from a distribution of
this form with 1 < a < ® , we may choose to use o = 1.7 in construct-
ing the estimates. This provides asymptotic efficiency for location at
least 84.T% for all the members of this family.

We now discuss briefly the asymptotic efficiency of these estimates
for the Cauchy distribution, a large tailed distribution which is clearly
not a member of this family. Consider an M-estimate in general, obtained

as the solution of:
(16) I n(A(x;-u)) =0 .
i

The minimum asymptotic variance over all choices of the scale para-

meter A is:

r n2(Ax) F(ax)
(17) min =

.
A x2{r n* () F(d.x)}

Consider F to be the Cauchy distribution function (in standard form)
and n(x) = x(l-x2)2 for |x| <1, 0 otherwise. This is Tukey's bi-
square and results in maximum asymptotic efficiency obtained from (17)
of about 90%. This efficiency is quite sensitive to the value of A.
As ) 1increases beyond its optimal value, the efficiency decreases to
0 because of the "redescending" nature of the function 1. Therefore,
8 reasonadbly accurate estimate of the scale factor A is critical for
efficient estimates of location. Replacing n(x) by s&(x)/sa(x) re-
sults in asymptotic efficiency of around .86 for a =2 and 3, for

example. In this case, however, the asymptotic efficiency is flat for

15




4

A in a broad neighbourhood of the optimum and as A + ®» , it approaches
8/12. Here, the choice of the optimal A is not nearly as critical
and results in the better performance of the estimator for n =20 in
the simulations of the next section. Bell (1980) explores problems in
adaptive estimation of the optimal A for the bisquare.

It may be desired to build in more adaptivity for large tailed dis~
tridbutions into this family. In fact, the family could be broadened to
include distributions whose tails decay at a slower than exponential
rate (and therefore lead to redescending score functions) by replacing
the gamma distribution which multiplies the normal by a distribution
such as Fisher's F. Of course, the resulting distribution will no
longer be closed under convolutions, one of the most attractive features
of the present family.

How much "robustness" is purchased with the loss in asymptotic ef-

ficiency evident in Figure 2? Since the influence curve is proportional

g'(x)
to the score function EOLGY which is bounded, the estimates are robust.
o

This function is also smooth for o adequately greater than 1. Treat-
ment of "outliers" is evident from the score function graphed in Figure
3 for various values of a. These functions are all asymptotic to 1
as x <> o, (Consider, for example the case o = 2, It is seen that the
value of the score function at x = 1 (roughly .7 standard deviations
from the mean) is around .5. In other words, in iterating (1l4), one
observation at o 1s only the equivalent of about 2 observations at

x = 1, The degree of robustness for the other values of o may simi-

larly be compared.

16
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Small Sample Behavior.
Andrews et al. (1972) indicate that adaptive estimates do not nor-

mally outperform non-adaptive ones except for moderate and large sample
sizes. It is therefore not expected that these estimates can consis-
tently outperform others over a broad range of distributions. On the
other hand, the attractive features of this family of distributions leads
one to hope that it does not suffer from the lack of robustness of nor-
mal estimators, or from too great a lack of efficiency by comparison
with others. There is little doubt that these estimators will be com-
petitive with the trimmed mean or Huber's proposal 2; the influence
functions can be made similar and the distributions considered here,
like Huber's least favourable distribution, all have exponentially de-
creasing tails. It was therefore decided to make the comparison on
possibly unfavourable ground; with an M-estimate of redescending type
such as Tukey's bisquare, and including wide tailed distributions such
as the Cauchy and the slash. We also chose a relatively small sample
size, n = 20 for the comparison. Adaptive estimates are usually ex-
pected to improve their performance for increasing n.

Exect maximum likelihood estimation of all three parameters is
computationally feasible and was performed on several samples of n=20.
Some problems are apparent because of the very flat nature of the like-
lihood as a function of «. For example, a significant proportion of
normal semples (o = ) leads to MLE of « constrained to the in-
terval [1,] of 1 and the resulting estimate of location the sample
median. This seems to result in loss of efficiency for the normal.

Due to the cost of full MLE,it was impossible to conduct a simulation

17
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study of the performance of the estimators and so the following crude
substitute was used. It seemed to provide comparable efficiency for
the estimation of location to a scheme based on likelihoods (but not,
of cowrse, for estimation of ).

Define m = med(xi) and

3 4
n J (X i-m)
i=l

k= -
n 22
) (Xi-m)]
=]
The estimator of o was
1, k>6
a=(2, b2<k<6
3, k<bh.2

In the case a =1 s the scale parameter does not affect the loca-
tion estimator which is simply the sample median. In case a=2 or 3.,
the scale parameter was estimated crudely by matching the median abso-
lute deviation of the sample with that of the assumed distribution.

Setting MAD = med|X, - med(X)| ,

= 2

>

MAD/1.146 when

D>
[ ]

MAD/1.58 when a = 3.
Finally, the location estimator was obtained by a one step Newton-
Raphson iteration of equation (14) starting with the median.
Comparison is made with the mean (normal case) and the sample median
for the other three distributiong. It is also compared with Tukey's bi-
square, an M;-estmtor with n(x) = x(1-x>) for |x| =1 anda 0 other-

wise. The value of A was taken to be 1/6.4MAD , a value that is
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observed by Bell (1980) and Johns to perform well over a wide range of

distributions. For larger values of A , the efficiency for the Cauchy
and the slash improve, but the efficiency for the normal drops sharply.
Table 1 contains the results of a simulation. The small sacrifice
in terms of the efficiency for the slash is exchanged for an improve-
ment on the Laplace, the normal and the Cauchy. This is not meant to
imply that estimation from this family should always be preferred to
Tukey's bisquare. The strength of the bisquare rests in part on its
treatment of situations not considered here. The implication intended
is that model-based inference can be competitive even outside the family

although it leaves open the question of whether the appropriate scheme ‘

N

is maximum likelihood. i




TABLE I

SMALL SAMPLE EFFICIERCY OF ADAPTIVE ESTIMATES WITH RESPECT TO:

(A) THE MEAN OR MEDIAN

(B) TUKEY'S BISQUARE

Sample size: n = 20

Table gives estimated efficiency in % ﬁ

UNDERLYING DISTRIBUTION

NORMAL LAPLACE CAUCHY SLASH
(%) 93’ 97" o or"
(B) 103.5 108 107 96.4
Sample
Size 8000 20000 24000 24000

# efficiency relative to sample mean.

® efficiency relative to sample median.

Note: The "Princeton swindle" was used throughout. (cf.
Andrevs et al.). I thank Barry Eynon for running these
simulations on the Stanford computer, and the Department
of Statistics, Stanford University, for providing the
computer time.
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Modelling Dependence.
One possible use for this family of distributions is in modelling

processes that are wider tailed than the normal and at the same time
dependent. This may be needed, for example, in determining vhether an
estimate is robust against both correlation in the sample and mild de-
partures from normality. Interactions between these two types of fai~
lures in the asgumed model might be detected through Monte Carlo methods.
There are two rather distinct ways in which a process having marginals
(4) can fail to be independent. Unlike a Gaussian process, we may have

» X

X uncorrelated and xf, x2 correlated for i # j. Modelling be-

E S | J
haviour of this kind and testing estimates against this type of "second
order" correlation may be important, especially since this is a type of
dependence rarely checked for in practice. This kind of behaviour is
by no means unusual. For example, consecutive changes in security
prices (on a log scale) often seem to indicate no first order correla-
tion but significant second order correlation.

We consider here processes analogous to the simpler Gaussian time

series such as stationary first order autoregressive. For a process

{xt} with marginals distributed as Be(0,0,a) , we may define

3
(18) X =B X +e

t+1 t

b

The coefficients Bt are not constant as in the Gaussian case, but are

distributed as the square root of a beta variate with parameters pa

and (l-p)a where O < p < 1. The errors e, are distributed




o

as Be(0,0,(1-p)a) and the variables Bk, , » and e, are all inde-

pendent. ‘The correlation function of a process defined as in (18) is

that of a stationary first order autoregressive:

o e oot Y
(19) oy =P where 0 EBt o) T(a+ .

Note that for a Gaussian process with correlation function (19), we

would have c°v(x§,x§+h) = constant p2‘h|.

have a slower (exponential) rate of decay with the correlation between

2wt 2

t+h

A similar process can be defined with Bt replaced by its negative,

resulting in p in (19) being replaced by its negative.

In this case, however, we

given by plhl (note that p > 02).

An alternative method of generating dependence (which may be used
for the generation of a continuous time process) is the following: Let

Zy

v(h). Let Gy

variasbles, independent of the Zt sequence. Define:

be a stationary (0,1) Gaussian sequence with correlation function

be a sequence of (possibly dependent) gamma (u,292)

= gt
(20) X, =Gg Z -

Then the autocovariance function of xt is:
: ¥ s
(21) Cov(X, , t+h) = y(n)EG, G2
2 2.4
(22) Cov(X2,Xa,) = (1+29°(n))E(0,G, ,,) - ba®e" .

22
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Note that when Zt

order correlation (21) is 0 bdbut the second order (22) is not necessa-

consists of 1.i.4. normal variables, the first

rily so. Therefore, this process may be used to model one such as the
first difference in the logarithm of stock prices, which exhibit nearly
normal behaviour, have no apparent correlation of the first order, but
show & tendency for large values of IXI to be followed by large values
of |X|. All we need do to model such & process is introduce dependence
in the G, sequence with either a moving average or an autoregressive

t
type relation such as:

Gray = ByGy + &y
where Bt’ Gt’ Gt are independent variables having respectively the beta
(pa, (1-p)a), gamme (a,20%) and gemma ((1-p)a,20%) distributions. This
is the theme of [13]).
A more convenient representation than (18) is available when o is
an integer. In fact, a stationary sequence can be generated by the usual

first order autoregressive relation:

(23) Xpap = PXp * &y

vhere -1 <p <1l and e is a random variable independent of x1

having moment generating function:

2 a
2 1~




If we interpret Be(0,0,a) as a point mass at the origin whenever
either 6 or a =0 , this is just the distribution of Be(0,0,a')
where a' is distributed binomially with parameters o and 1-92.
Alternatively, it may be expressed as the sum of o random variables
with distribution Be(0,0',1) vhere 6' =0 or 8 with probabili-
ties 92, l-pa. Thus, this family of densities is in Feller's class
L (Feller (1971), pp. 588-590).

Similarly, higher order autoregressive schemes are obtainable.
For example, for a second order autoregressive process with distinct
characteristic roots p, and o, , both less than 1 in absolute
value, the distribution of the errors is the distribution of the sum
of o i.i.d. variates having distribution Be(0,8',1) where 6' is

a random variable assuming three values, O, plp29 , and 0O,

Acknowledgement.
I am grateful to Barry Eynon for conducting the simulations, to

D. Hinkley, V. Johns, and the referees for their help.

—




e

D T T T e T e R T T mwmm';

References

(1]

(2

(3]

(4]

(5]

(6]

(7

(81

(91

[10]

[11)

[12]

[13]

[14]

Abramowitz, M., and Stegun, I. (1964). Handbook of Mathematical
Functions, VIA Department of Commerce.

Andrews, D., Bickel, P., Hampel, F., Huber, P., Rogers, W., and
Tukey, J. {1972). Robust Estimates of Location. Princeton
University Press.

Barndorff-Nielson, O. (1977). Exponentially Decreasing Distribu-
tions for the Logarithm of Particle Size. Proc. R. Soc. Lond.
A. 353, LOol-k19,

Bell, R. M. (1980). An Adaptive Choice of the Scale Parameter for i
M-estimators. Department of Statistics, Stanford University
Technical Report No. 3.

Bhattacharya, S. K. (1966). A Modified Bessel Function ‘lodel in
Life Testing. Metrika 10, 133-144.

Feller, W. (1971). An Introduction to Probability Theory and its
Applications. Volume II, John Wiley and Sons, Inc., New York.

Gradsheteyn, I. S., and Ryzhik, I. M. (1965). Tables of Integrals,
Series, and Products. Academic Press.

Holland, P. W., and Welsch, R. E. (1977). Robust Regression Using :
Iteratively Reweighted Least Squares. Comm. Statist. Theor.
Meth. A6(9), 813-827.

Johnson, N., and Kotz, S. (1970). Continuous Univariate Distribu-
tions 1 & 2. Houghton Mifflin.

Laha, R. G. (195k). On Some Properties of the Bessel Function Dis-
tributions. Bull. Calec. Math. Soc. 46, 59-T1.

Lloyd, E. H., and Saleem, S. D. (1979). A Note on Seasonal Markov
Chains with Gamma or Gamma-Like Distributions. J. Appl. Prob.
16, 117-128.

McKay, A. T. (1932). A Bessel Function Distribution. Biometriks
21" ’ 39""”4 .

McLeish, D., and Pierson, H. A Dependent Increment Model for Security.
Submitted.

Pearson, K., Jeffery, G. B., and Elderton, E. M. (1929). On the
Distribution of the First Product-Moment Coefficient in Samples
Drawn from an Indefinitely Large Normel Population. Biometrika
g}, 164-201.




(151

(161

(171

(18]

{19]

[20]

Pearson, K., Stouffer, S. A., and David, F. N. (1932). Further
Applications in Statistics of the Tm(x) Bessel Function.
Biometrika 2k, 316-343.

Press, S. J. (1967). On the Sample Covariance from a Bivariate
Normal Distribution. Ann. Inst. Stat. Math. 19, 355-361.

Sichel, H. S. (1973). Statistical Valuation of Diamondiferous
Deposit. J. S. Afr. Inst. Min. Metall. 73, 235-243.,

Stigler, S. M. (1977)}. Do Robust Estimators Work with Real Data?
Ann. Statist. 2, 1055-1098.

Teichroew, D. (1957). The Mixture of Normal Distributions with
Different Variances. Ann. Math. Statist. 28, 510-512.

Wilkinson, G. N. (1979). Robust Inference - the Fisherian Approach.
Robustness in Statistics, Academic Press, New York.




9°0 00 8°0- ¢ 1- 8" 1- v - .b.ﬂl

r
01°0 000

0

Ll

L)
02°0

NOILNBIYLSIG 13SS38 40 ALISH3O
[ ounbq

(2 w.m\vum nZp

e,




! Figure 2
1.0
!
1
A E ‘
S F ?
Y F 99
Mo
P C !
T 1 5
| 0 E -8 |
| T N ’
' I ¢ 5
cC Y :
. |
!
¥ L L B i [ ] | ¢ ¥ l
1 2 3 4 5 6 7

Assumed value of «

Asymptotic Efficiency of Estimate of Mean of

Normal Sample for Assumed Value of «




WISy R
t ‘.
_ ;,
‘ Figure 3
4
1{.000 —_—————
S 0.800 -;
c
R
E
. 0.%0Q0 -
3
0.200
| -
e.0e0 -3 ] T T T
{ g.00 1.00 2.00 3.00 4.00 S.QG
# Standard deviations away

5 VALUE @F SCORE VS NUMBER OF

STANDARD DEVIATIGN3 OF
GB3ERVATIOGN FROM MERN

29




, S ]
i- ,:i‘
I
b UNCLASSIFIED
i‘ ' ] SECURITY CLASSIFICATION OF TS PAGE Mhen Date Entered)
REPORT DOCUMENTATION PAGE Er AR S TRUCTIONS, e
NUM RECIPIENT'S CATALOG MUMBER
= 937
4. TITLE (and Subtitie) ) S. TYPE OF REPORY & PERIOD COVERED
A ROBUST ALTERNATIVE TO THE NORMAL TECHNICAL REPORT
DISTRIBUTION 6. PERFORNING ORG. REPORT NOMBER |
L’-_Wmm T. CONTRAZY O GRANY nuuoRNG
D. L. McLeish N00014-76-C-0475
. PERFORMING ONGANIZATION NAME AND ADDRKESS . PROGRAM KL EMENT, . TASK
Department of Statistics " T e

Stanford University
Stanford, CA 94305

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office Of Naval Research July 7, 1982
St?f_:i stics & Prob?bi lity Program Code 411sp " ;‘;“'" OF PAdks
%%%&M%_L_—anm Trem Contrelling Office) | 13. SECURITY CLASS. (of this repert)
\ UNCLASSIFIED

e D!CkliﬁﬂCAﬂOn? OOWNGRADING
SCHEDULE

P ——————————— ——
16, DISTRIBUTION STATEMENT (of this Repert)

APPROVED FOR PUBLIC RELEASE: ODISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the abstenct enteved in Block 20, i1 ditterent lrom Repert)

19. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and idemtity by dleck number)

Robust Estimation, Non-Normal Alternatives, Outliers.

20. ARSYRACT (Continue on reverse oide If necsesary and identily by black number)

PLEASE SEE REVERSE SIDE.

DD ,’3™, 1473  coimion oF 1 wov 68 15 ossoLETE UNCLASSIFIED

$/N 0102- L5 314- 6601

SECURITY CLASIFICATION OF THIS PAS e

R ﬂ
S e e ‘.. . B




....

UNCLASSIFIED
SECURITY CLASSIFICATION OF TWIS PAGE (When Date Sntored : i
. - ‘ i
#1321
A wider tailed family of distributions is suggested as an
alternative to the normal distribution having many of the desir-
able properties of the normal family. One advantage of this
alternative is the greater robustness of maximum 1ikelihood
estintes\
!
(
!
!
!
|
{
|
ii
!
|
i
R IR S T T
T UNCLASSIFIED

B2 .05 8:34°°Cn IF “if PAIE Whea Jare Entered)




